Part I	Exploring and Understanding Data
Chapter 1	Stats Starts Here
Statistics is	a way of reasoning, along with a collection of tools and methods,
	designed to help us understand the world.
Statistics are	particular calculations made from data.
A statistic is	A numerical summary of data
Statistics is about	variation
Chapter 2	Data
Data are	values along with their context
The context for data values is	The "W's"
provided by	Why do we care about the data?
	Who are the individuals described by the data?
	What variables do the data contain?
	When
	Where
	How
	(Necessary)
Three steps to doing Statistics	Think –were you're headed and why (the "W's").
right:	Show – the mechanics of calculating statistics and making displays.
	Tell – what you've learned remembering the "4 Cs."
4 Cs: conclusions are	Clear, concise, complete, and in context.
Data table	An arrangement of data in which each row represents a case and
	each column represents a variable.
Case	An individual about whom we have data (row of data table)
Individual	Object described by a set of data (person, animal, thing, identifier
	variable)
Variable	Holds information about the same characteristic for many cases.
	(column of data table)
Variables can usually be	
identified as either or :	Categorical or quantitative
Categorical variable	Places an individual into one of several groups or categories
Quantitative variable	Has numerical values (with units) that measure some characteristic
	of each individual.
Ordinal variable	Reports order with out natural units.
You must look at the	Why
of your study to decide whether	5
to treat it as or	Categorical or quantitative
Identifier variable	ID number or other convention often used to protect confidentiality
	(Categorical variable with exactly one individual in each category)
Chapter 3	Displaying and Describing Categorical Data
Three things you should always	1. Make a picture – a display will help you <i>think</i> clearly about
do first with data:	patterns and relationships that may be hiding in your data.
	2. Make a picture – <i>show</i> important features and patterns in your
	data
	3. Make a picture – best way to <i>tell</i> others about your data.
To analyze categorical data, we	· · · · ·
often use or	counts (frequencies) or percents (relative frequencies)

of individuals that fall into	
various categories.	
(Relative) Frequency table	Lists the categories in a categorical variable and the (percentage)
[Distribution of a categorical	count of observations for each category.
variable]	
Area principle	In a statistical display, each data value should be represented by the
1 1	same amount of area.
(Relative Frequency) Bar chart	Shows a bar representing the (percentage) count of each category in
	a categorical variable.
Pie chart	Shows how a "whole" divides into categories by showing a wedge
	of a circle whose area corresponds to the proportion in each
	category.
Contingency table	Displays counts (percentages) of individuals falling into named
	categories on two (or more) variables, columns vs. rows. The table
	categorizes the individuals on all variables at once to reveal
	possible patterns in one variable that may be contingent on the
	category of the other
Marginal distribution	The distribution of one of the variables alone is seen in the totals
	found in the last row/column of a contingency table (see frequency
	table)
Conditional distribution	The distribution of a variable restricting the <i>Who</i> to consider only a
	smaller group of individuals
	[A single row (column) of the contingency table]
Relationships among	[IT single low (column) of the contingency table.]
categorical variables are	
described by calculating	narcants
from the given. This	counts
avoide	count variation between them
Sogmonted Bar Chart	A stacked relative frequency has chart (100% total)
Segmented Bar Chart	A stacked relative frequency bar chart (100% total).
	Is nig chart within a her chart
Independent verichles	The conditional distribution of one variable is the same for each
independent variables	The conditional distribution of one variable is the same for each
	category of the other.
<u>S'anne a 2 a marte da m</u>	[11 rows (columns) of contingency table have = distributions]
Simpson's paradox	when averages are taken across different groups, they can appear to
Character A	Contradict the overall averages
Chapter 4	Displaying Quantitative Data
Distribution of a quantitative	Tells us what values a variable takes and how often it takes them.
variable	Snows the pattern of variation of a (quantitative) variable.
Stem-and-leaf plot	A sideways histogram that shows the individual values.
	Bins/intervals might be the tens places with the ones places strung
	out sequentially to the right.
Back-to-back stem-and-leaf plot	Useful for comparing two related distributions with a moderate
	number of observations.
Dotplot	Graphs a dot for each case against a single axis.
(Relative Frequency) Histogram	Uses adjacent, equal-width bars to show the distribution of values in
	a quantitative variable. Each bar represents the (percentage) count
	falling in a particular interval of values. (% are useful for comparing

	several distributions with different numbers of observations.)
A good estimate for how many	
bars will give a decent	Number of observations
histogram =	5
Once we make a picture, we	Shape, center, spread, and any unusual features.
describe a distribution by telling	
about its	
Shape	Uniform, single, multiple modes
	Symmetry vs. skewed
Uniform	A distribution that is roughly flat.
Mode	A hump or local high point in the shape of the distribution of a
	variable (unimodal, bimodal, multimodal).
Symmetric	A distribution where the two halves on either side of the center look
	approximately like mirror images of each other.
Skewed (left/right)	A non-symmetrical distribution where one tail stretches out further
	(to the left/right) than the other.
Center	A "typical" value that attempts the impossible, summarizing the
	entire distribution with a single number. {midpoint}
Spread	A numerical summary of how tightly the values are clustered around
	the "center." {range}
Outliers	Extreme values that don't appear to belong with the rest of the data.
Timeplot	Displays quantitative data collected over time (x-axis). Can reveal
	trends overlooked by histograms and stem-and-leaf plots that ignore
	time order. Often, successive values are connected with lines to
	show trends more clearly.
Time series	Measurements of a variable taken at regular time intervals.
Seasonal variation	A pattern in a time series that repeats itself at know regular intervals
	of time.
Chapter 5	Describing Distributions Numerically
Median	Middle value (balances data by counts) (equal-areas point)
Range	Max – min data values
<i>p</i> th percentile	Value such that <i>p</i> percent of the observations fall at or below it.
Lower quartile (Q1)	Median of the lower half. (25 th percentile)
Upper quartile (Q3)	Median of the upper half. (75 th percentile)
Interquartile range (IQR)	Q3 - Q1, the middle half of the data.
5-number summary	Max
	Q3
	Median
	Q1
	Min
Suspected outlier	If observation $>$ Q3 + (1.5)(IQR)
	Or observation $<$ Q1 – (1.5)(IQR)
Boxplot	Displays the 5-number summary as a central box with whiskers that
	extend to the non-outlying data values. Particularly effective for
	comparing groups. However, a histogram or stem-and-leaf plot is a
	clearer display of the shape of a distribution.
Mean	[Average]

	$\overline{x} = \frac{\sum x}{\sum x}$
	Add up all the numbers and divide by n (balance point, by size) (balances deviations)
Deviation	How far each data value is from the mean
Variance	$\frac{\sum (x - \overline{x})^2}{\sum (x - \overline{x})^2}$
v ununee	$s^2 = \frac{\sum (x-x)}{x}$
	n-1
Chan dand dariation	Sum of the squared deviations from the mean, divided by $n - 1$.
Standard deviation	$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$
	The square root of the variance (gets us back to the original units)
Report summary statistics to	1 0
decimal places	1 or 2
When describing the	more man the original data.
distribution of a quantitative	
variable if the shape is skewed	
then report	median and IOR (they are based on position)
If the shape is symmetric then	incutant and IQIX (they are based on position)
report and	mean and standard deviation (they are based on size/value)
repeat calculations without	
if present.	outliers
A complete analysis of data	
almost always includes:	Verbal, visual, and numerical summaries.
Answers are, not	sentences, numbers
Chapter 6	The Standard Deviation as a Ruler and the Normal Model
Adding (subtracting) a constant	
to every data value	adds (subtracts)
the same constant to measures	
of position/center and	1 / 1
measures of spread.	does not change
deta value by a constant	
the same constant	multiplies (divides)
to measures of position/center	multiplies (urvides)
and measures of	multiplies (divides)
spread.	
Changing the center and spread	
of a variable is equivalent to	changing its units.
Standardizing	Uses the standard deviation as a ruler to measure distance from the
	mean creating z-scores
	$z = \frac{(x - \overline{x})}{\overline{x}}$
	<i>z</i> – <i>S</i>
z-scores tell us	the number of standard deviations a value is from the mean.
important uses are:	1. Comparing values from different distributions (decathlon events)
	or values based on different units.

	2. Identifying unusual or surprising values among data.
	3.
Units can be eliminated by	standardizing the data.
have no units.	z-scores
When we standardize data to get	
we do two things.	z-scores
First we the data by	shift
subtracting the mean. Then we	
the data by dividing by	rescale
their standard deviation.	
Standardizing has the following	Shape – is not changed.
affect on the distribution of a	Center – the mean is shifted to 0
variable:	Spread – the standard deviation is rescaled to 1
If the distribution of a	
quantitative variable is	unimodal
and then the we can	roughly symmetric
replace histograms by	
approximating the distribution	
with	a normal model.
are summaries of	Statistics
the data denoted with	Latin letters
mean,standard deviation,	<i>x</i> , s
are numerically	Parameters
valued attributes [statistics] of a	
model (they don't come from	
the data, they just specify the	
model) denoted with	Greek letters
mean,standard deviation,	μ, o
A normal model is constructed	$v = \frac{1}{1 - e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}}$
from a rather complex equation	$y = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{\sigma}}$
only dependent on parameters	mean, standard deviation
for and	$N(\mu,\sigma)$
The distribution of a all many all	
I ne distribution of each normal	weine del ermenetrie and hell shared
model is,, and	unimodal, symmetric, and ben-snaped
as show by its density curve.	
we call it a defisity curve	
normal model adjusts the scale	
(of y height) so that the area	
(or y, height) so that the area	1
the for the distribution	relative frequency
This scaling is extremely	Specifically, it allows us to convert standard deviations into percents
important in conceptualizing	that are much easier to comprehend
how unusual a value(z-score) is	
To avoid having to work with	we convert our data to z-scores and use just one Standard Normal
the complicated normal model	Model $N(0, 1)$ and its associated table
the complicated normal model	model mo, i) and its associated able.

equation or lug around a myriad	
of tables for every possible	
$N(\mu,\sigma)$	
Normal percentile	Read from a table of normal probabilities, it gives the percentage of
	values in a standard normal distribution found lying below a
	particular z-score.
The easiest conversion (from	
standard deviations to percents)	
is to remember the	68,95,99.7
rule. About of the data fall	68%
within 1 standard deviation of	
the mean, about within 2	95%
and about within 3.	99.7%
Use this TI function	normalcdf(lower z-score, upper z-score)
if asked to find % or area	
Use this TI function	invNorm(area to left)
If given % or area	output is z-score that may have to be converted back
is a more precise	A normal probability plot
method than a histogram of	
checking the nearly normal	
condition, that the shape of the	
data's distribution is	unimodal
and	roughly symmetric
If the normal probability plot is	
roughly	a diagonal straight line
Then a normal model	
	will approximate the (actual) data well.
The of a normal	Inflection point
curve identifies one standard	
deviation from the mean.	
3 reasons normal distributions	1. Good descriptions for some distributions of real data.
are important in statistics:	2. Good approximations to many kinds of chance outcomes.
	3. Utilized in many statistical inference procedures.